The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein.
نویسندگان
چکیده
Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topological forms of the duplex DNA. The presence of negative superhelicity increased the pairing efficiency and reduced the minimal length of homology required for paranemic joint formation. Negative superhelicity stimulated joint formation by favoring the initial unwinding of duplex DNA that occurred during the homology search and was not essential in the maintenance of the paired structure. Regardless of length of homology, formation of paranemic joints using circular duplex DNA required the presence of more than six negative supercoils. Above six negative turns, an increasing degree of negative superhelicity resulted in a linear increase in the pairing efficiency. These results support a model of two distinct kinds of DNA unwinding occurring in paranemic joint formation: an initial unwinding caused by heterologous contacts during synapsis and a later one during pairing of the homologous molecules.
منابع مشابه
Homology-dependent underwinding of duplex DNA in recA protein generated paranemic complexes.
RecA protein promoted formation of paranemic joints, in which a recA-ssDNA complex and a nicked circular dsDNA molecule are homologously aligned without net cross-strand interwinding, is accompanied by extensive underwinding of the dsDNA molecule. When the nick is sealed by DNA ligase, a highly negatively superhelical DNA molecule is formed. This underwinding has the following properties: (a) i...
متن کاملHomology-dependent changes in adenosine 5'-triphosphate hydrolysis during recA protein promoted DNA strand exchange: evidence for long paranemic complexes.
As a first step in DNA strand exchange, recA protein forms a filamentous complex on single-stranded DNA (ssDNA), which contains stoichiometric (one recA monomer per four nucleotides) amounts of recA protein. recA protein monomers within this complex hydrolyze ATP with a turnover number of 25 min-1. Upon introduction of linear homologous duplex DNA to initiate strand exchange, this rate of ATP h...
متن کاملOn RecA protein-mediated homologous alignment of two DNA molecules. Three strands versus four strands.
The recA protein from Escherichia coli can homologously align two duplex DNA molecules; however, this interaction is much less efficient than the alignment of a single strand and a duplex. Three strand paranemic joints are readily detected. In contrast, duplex-duplex pairing is detected only when the incoming (second) duplex is negatively supercoiled, and even here the pairing is inefficient. T...
متن کاملDNA substrate requirements for stable joint molecule formation by the RecA and single-stranded DNA-binding proteins of Escherichia coli.
In reactions between linear single-stranded DNAs (ssDNAs) and circular double-stranded DNAs (dsDNAs), stable joint molecule formation promoted by the recA protein (RecA) requires negative superhelicity, a homologous end, and an RecA-ssDNA complex. Linear ssDNAs with 3'-end homology react more efficiently than linear ssDNAs with 5'-end homology. This 3'-end preference is explained by the finding...
متن کاملElectron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 20 شماره
صفحات -
تاریخ انتشار 1998